skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hong, Jenna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Applications of generative models such as Generative Adversarial Networks (GANs) have made their way to social media platforms that children frequently interact with. While GANs are associated with ethical implications pertaining to children, such as the generation of Deepfakes, there are negligible efforts to educate middle school children about generative AI. In this work, we present a generative models learning trajectory (LT), educational materials, and interactive activities for young learners with a focus on GANs, creation and application of machine-generated media, and its ethical implications. The activities were deployed in four online workshops with 72 students (grades 5-9). We found that these materials enabled children to gain an understanding of what generative models are, their technical components and potential applications, and benefits and harms, while reflecting on their ethical implications. Learning from our findings, we propose an improved learning trajectory for complex socio-technical systems. 
    more » « less